

KK Exhaust valve

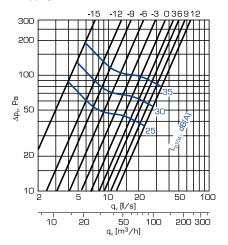
KK exhaust valve is intended for installation in the ceiling or on a wall. The valve is suitable for offices, houses, etc.

Quick Selection

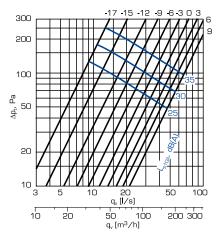
Valve	Air	flow range I/s at sound	level
Size	25 dB(A)	30 dB(A)	35 dB(A)
KK-80-C	23	28	34
KK-100-C	30	37	45
KK-125-C	46	57	68
KK-150-C	58	70	81
KK-160-C	64	80	98
KK-200-C	120	140	170

Specifications

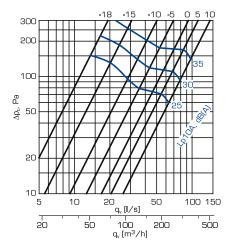
- CleanVent coating as standard
- Manufactured from steel sheet.
- Available also in stainless steel.
- Six sizes.


Product code example Exhaust valve KK-125-C

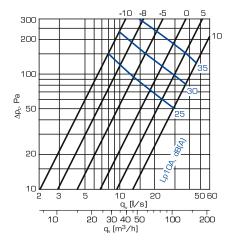
4880 GB 2018.02.23



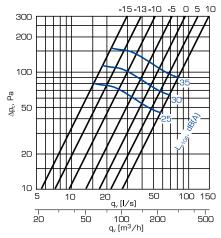
Air flow, pressure drop, sound level


KK-80-C

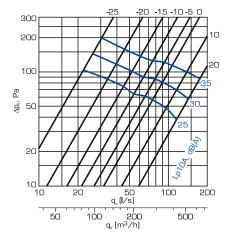
KK-125-C



KK-160-C



4880 GB 2018.02.23


KK-100-C

KK-150-C

KK-200-C

Sound power level Lw

KK				of sound I , middle			
	125	250	500	1000	2000	4000	8000
80	1	-2	1	0	-3	-10	-22
100	5	-2	-3	-3	0	-8	-20
125	-6	0	0	-3	0	-13	-25
150	-6	-5	-4	0	-1	-13	-28
160	1	-1	-3	1	-2	-15	-32
200	3	1	-1	1	-4	-12	-25
Tol.+/-	3	2	2	2	2	2	3

Sound power levels by octave bands are obtained by adding to total sound pressure level L_{p10A} , dB(A) the corrections K_{oct} presented in the table according to the following formula:

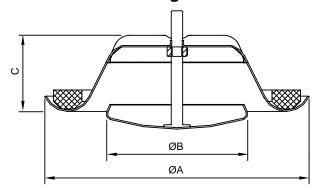
$$L_{Woct} = L_{p1OA} + K_{oct}$$

Correction K_{oct} is average value in range of use of KK unit.

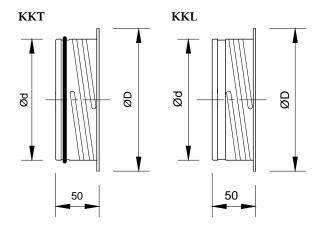
Sound attenuation ΔL

1717	Slot s	Sound attenuation in dB at octave bands, middle frequency, Hz							
KK	(mm)								
	,	63	125	250	500	1000	2000	4000	
80	-9	24	20	14	10	8	5	5	6
	0	24	19	13	9	6	3	4	5
	12	24	19	13	9	5	2	3	4
100	-10	23	19	14	12	11	10	13	14
İ	0	23	16	11	8	7	6	9	8
İ	10	23	16	11	7	5	4	7	8
125	-17	20	19	13	10	7	7	11	14
	0	18	16	10	6	4	4	5	8
	9	19	16	9	6	3	3	5	7
150	-15	21	14	11	8	6	6	8	8
	0	20	13	9	6	4	4	7	6
	10	16	14	9	4	3	2	7	7
160	-15	18	13	11	7	6	6	8	8
	-10	18	13	10	6	5	5	7	7
	0	17	13	9	5	4	3	6	6
200	-15	17	12	8	7	6	7	8	9
	-5	17	11	7	6	5	6	6	8
	0	17	11	7	5	5	6	6	7
To	l. ±	6	3	2	2	2	2	2	3

The average sound attenuation ΔL from duct to room including the end reflection of the connecting duct in ceiling installation, is obtained in the table above.


Definitions

q_{v}	air volume	l/s, m ³ /h	
Δp_t	total pressure drop	Pa	
Ι	sound pressure level with 4 dB	dB(A)	
L_{p10A}	room attenuation (10 m ² sab)	$u\nu(\Lambda)$	
L_{Woct}	sound power level by octave bands	dB	
ΔL	sound attenuation	dB	
Koct	correction	dB	


4880 GB 2018.02.23

Dimensions and weight

Size	Α	В	С	Weight
	[mm]	[mm]	[mm]	[kg]
80	116	60	40	0.15
100	140	75	40	0.16
125	170	99	46	0.23
150	202	119	54	0.34
160	202	119	54	0.34
200	254	157	64	0.51

Size	Pack size	Ød	ØD	Weight KKT	Weight KKL
		[mm]	[mm]	[g]	[g]
80	60	79	101	66	63
100	56	99	122	75	71
125	36	124	148	102	97
150	24	149	175	123	116
160	25	159	184	131	125
200	12	199	225	165	156

4880 GB 2018.02.23

General

Construction

The KK is manufactured from steel sheet and painted in white (RAL 9010). Other colours are available to special order. CleanVent coating as standard. Stainless steel version is also available and it is always delivered with a stainless steel version of mounting ring.

Valve body has a gasket made of cellular plastic and the control disc with screw spindle enables easy regulation and positional locking.

Mounting rings KKT and KKL are manufactured from galvanized steel sheet. KKT is equipped with rubber sealing gasket.

Installation

Mounting ring is fitted into the duct with screws or rivets. The valve is fixed by "a screwing action" to locate the valve lugs into indents in the mounting ring. The valve can also be fitted with springs (model KKJ) and the mounting ring is not needed.

Measurement and regulation of air flow

Regulation of air flow is achieved by turning the control disc to change adjustment dimension s (mm).

The measurement of air flow is made by a pressure difference measurement with a separate measuring tube.

Refer to air flow measurement diagrams found in the separate installation and measurement instructions for information.

Descriptive text

Exhaust valve KK, e.g. KK-125-C manufactured by FläktWoods.

Product code

Exhaust valve

KK-aaa-b

Accessories and spare parts

Exhaust valve with springs KKJ-aaa-b

Accessories Mounting ring with rubber gasket Mounting ring without rubber

KKT-aaa

Size (aaa) 080, 100, 125, 150, 160, 200

Surface finish (b) C = Standard CleanVent coating gasket

KKL-aaa

E = Special colour

Size (aaa)

080, 100, 125, 150, 160, 200

Exhaust valve, stainless steel including mounting ring

KK-aaa-R

Spare parts

COGZ-aaa-3 Seal

Size (aaa)

080, 100, 125, 150, 160, 200

Size (aaa) 100, 125, 160

4880 GB 2018.02.23